A short proof of the Hardy-Littlewood maximal inequality

Here is a short post to advertise a proof of the weak L^1 bound for the Hardy-Littlewood maximal function. The proof was told to me by Terry Harris, a fellow graduate student at UIUC, and can be found on his webpage. In short, he replaces the use of Vitali’s covering lemma with a clever greedy algorithm. Incidentally his proof gives the better constant 2^d, though this is well known, see for instance exercise 42 in these notes of Tao. One related geometric question is can one improve the constant in Vitali’s covering lemma to 2^d? This is open for d = 2.

Kevin Hughes pointed out to me that this proof basically appears in this paper of Carlsson.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s